Israeli Researchers Could End Animal Testing With Bionic Organs-On-Chip

By NoCamels Team September 01, 2015 Comments

Safety evaluation is a critical part of drug and cosmetic development. But in recent years there is a growing understanding that animal experiments fail to predict the human response, necessitating the development of alternative models to predict drug toxicity and reactions.

In addition, the recent tightening of European regulations preventing the cosmetic industry from using animals in research and development, blocks companies like L’Oréal and Estée Lauder from developing new products, bringing massive investment into this field.

SEE ALSO: Israeli Scientists Develop The Future Of Flexible Screen Displays Using Nanotechnology

liveronchiphebrewu

The liver-on-chip

The main challenge in replacing animal experiments is that human cells seldom survive more than a few days outside the body. To address this challenge, scientists at the Hebrew University of Jerusalem and the Fraunhofer Institute for Cell Therapy and Immunology in Germany partnered to create a liver-on-chip device mimicking human physiology.

“The liver organs we created were less than a millimeter in diameter and survive for more than a month,” said Prof. Yaakov Nahmias, the study’s lead author and Director of the Alexander Grass Center for Bioengineering at the Hebrew University.

The secret is in the nanotechnology

While other groups showed similar results, the breakthrough came when the groups added nanotechnology-based sensors to the mix. “We realized that because we are building the organs ourselves, we are not limited to biology, and could introduce electronic and optical sensors to the tissue itself. Essentially we are building bionic organs on a chip,” said Nahmias.

The addition of nanotechnology-based optoelectronic sensors to the living tissues has already enabled the group to identify a toxic effect of Tylenol acetaminophen (Tylenol).

liveronchip

An older spleen-on-chip model.

“Because we placed sensors inside the tissue, we could detect small and fast changes in cellular respiration that nobody else could,” said Nahmias. The authors discovered that acetaminophen, commonly known as Tylenol, blocked respiration much faster and at a much lower dose than previously believed. Previously, damage was thought to occur only at high doses and in cases of diseased or compromised liver function.

SEE ALSO: StoreDot’s Technology Charges A Smartphone In 30 Seconds!

The current study turns 50 years of research on its head. The authors found that acetaminophen itself can stop cellular respiration in minutes, explaining much of the off-target effects of the drugs.

“This is a fascinating study,” said Prof. Oren Shibolet, Head of the Liver Unit at the Tel-Aviv Sourasky Medical Center, and one of the leading experts on drug-induced liver injury, who was not involved in the original study. “We knew that acetaminophen can cause nephrotoxicity, or a poisonous effect on the kidneys, as well as rare but serious skin reactions, but up until now, we didn’t really understand the mechanism of such an effect. This new technology provides exceptional insight into drug toxicity, and could in fact transform current practice.”

nanotechnology

An alternative to animal testing?

The results mark the first discovery of a new toxicity mechanism using the newly emerging human-on-a-chip technology, suggesting that the development of alternative models for animal testing is just around the corner. The global market of this technology is estimated to grow to $17 billion by 2018, showing a double-digit annual growth rate in the last three years.

In addition, it could but an end to the often cruel and inefficient practice of testing on animals – a practice that has born important fruit for the medical community, but comes with a heavy cost.

Yissum, the Research and Development Company of the Hebrew University, together with the Fraunhofer Institute for Cell Therapy and Immunology (IZI-BB) in Germany submitted a joint provisional patent application earlier this year and are actively seeking industrial partners.

Facebook Comments
image description
OurCrowd
Load more